THE SEPSPOT PROGRAM INPUTS & EXECUTION

SEPSPOT is a GRC derivative of the SECKSPOT program that Carl Sauer of JPL and John Riehl have modified. These changes make it more consistent with input conventions our other low thrust codes, more versatile, and more stable in converging the two-point boundary value problem. Note that some of the original variable names have changed to something more conventional or intuitive (i.e. w,wf,zl0,spim,ef,pkw to orb1,orb2,el0,isp,eta,p0). GRC modifications include a data collection facility for post-processing of trajectory data, approximate degradation performance of GaAs solar cells, changing the central body from the earth to any planet, and new variables for apogee and perigee altitude.

The user should examine the original SECKSPOT documentation for details on theoretical foundation of the program, its structure and outputs. The following is intended to be a quick summary of the inputs, both mandatory (without default values) and optional (with defaults), plus GRC modifications.

GENERAL INPUTS
Low Thrust
Combined High/Low Thrust
Input as

Initial state

a (km)

orb1(1)

e
set to zero
orb1(2)

i (deg)

orb1(3)

long. of asc. node (deg)
optional
orb1(4)

arg. of perigee (deg)
not used
orb1(5)

mass (kg)

m0

flux

flunc

Initial guesses

 a
like upsilon
el0(1)

 h
like Small's k
el0(2)

 k
like Small's j
el0(3)

 p
scale factor
el0(4)

 q
nodal angle(rad) or its adjoint
el0(5)

 m

n.a.

 n

n.a.

Final state

a(km)

orb2(1)

e

orb2(2)

i

orb2(3)

node (not used if nop=2)
not used
orb2(4)

perigee (not used if nop=2)
not used
orb2(5)

Mandatory Inputs
Variable Name
Description

orb1(1:5)
Initial orbital elements (km. & deg.)

m0
Initial mass (kg)

flunc
Initial fluence

el0(1:7)
Initial guesses of costates as ordered above.

orb2(1:5)
Final orbital elements (km. & deg.)

tend or tf2
Guess for final time (days)

p0 or pkw
Power (kw)

eta or ef
Efficiency (no dimensions)

isp or spim
Specific impulse of low thrust propulsion system (sec)

tl
Julian date of the initial epoch (days)

Optional Inputs
Variable Name(dimension)
Description
Nominal or Default Value

aj2
= oblateness for planets other than earth
0

cth
= cell thickness(mils
6.

dt2
time step in days
0.

if ≤0 dt2 is calculated for the user

dvi1
total initial high thrust ∆V (m/s)
0.

ew
error weights for differential equations
1,1,1,1,1,0,...

flim
norm limit in iteration routine
1.d-06

gm
earth gravitational constant (km**3/sec**2)
398600.485

iaj2
if = 1, then oblateness on &

 aj2 = 1.0827d-3
0

ib
if = 0, infinite back shielding

 = 1, equal shielding front and back

= 2, unequal front and back shielding

0

ibr
= 0, base resistivity of 1-3 ohm-cm

= 1, base resistivity of 7-13 ohm-cm
1

icon
= 1 no constraint

= 2 pitch zero

= 3 role and pitch zero

= 4 role and pitch zero and no jump calc.
1

ihi
if = 1, low thrust only

= 2, high/low
1

ipow
if = 0, constant solar power

= 1, degradation effect
1

ipr
print flag - ipr>0 for output

must be >0 for pst output
0

iq
= number of quadratures if icon=1 (1-10)
2

ison
if = 0, shadow effect off

=1 shadow effect on

=2 startup delay effect on
0

isun
if = 0 sun annual distance effect upon power off

= 1 effect on
0

kstep
= 0, step (array) as fraction in iter

= 1, step as constant in iter (except step(8))
0

listz(2)
= array containing pointer(s) to the increment variables (See table below)
0,0

list
= true, generates a quick look run summary {see filename.lst}
false

minyn(3,2)
= base value, increment, final value of the variable(s) pointed to by listz

nimax
maximum number of iterations
20

node
= 0, initial line of nodes free

= 1, initial line of nodes fixed (node meaningful only if ihi = 2)
0

nop
if = 1, 5 o.e. specified at tf

 = 2, 3 o.e. specified at tf
1

norb
= 0, no orbit print

= 1, ...,999,orbit print on norb points of orbit
0

sgn
= -1., initial i is negative-high thrust only

= +1., initial i is positive-high thrust only

sh(2)
= front and back shield thickness (mils)
6.

step(8)
step size for numerical diff.
1.d-6

tfmax2
maximum tf2 (days)
999.

title
descriptive run title (max. of 96 char.)
blanks

ueb
upper error bound for differential equations
1.d10

utkm
equatorial earth radius (km)
6378.214

xtrap
> 0, turns on extrapolation of guesses to adjoints and time for minyn changes

=1 linear extrapolation

≥2 quadratic “

Caution: extrapolation can cause erroneous input conditions such as a negative tf2 guess
0

Pointers and Variables available for Incrementing
LISTZ
Variable Pointed To
Description

1
orb1(1)
departure semi-major axis

2
orb1(2)
departure eccentricity

3
orb1(3)
departure inclination

4
orb1(4)
departure longitude of ascending node

5
orb1(5)
departure argument of perigee

6
m0
initial spacecraft mass

7
flunc
initial fluence

8
orb2(1)
target semi-major axis

9
orb2(2)
target eccentricity

10
orb2(3)
target inclination

11
orb2(4)
target longitude of ascending node

12
orb2(5)
target argument of perigee

13
pkw or p0
initial spacecraft power

14
spim or isp
specific impulse

15
ef or eta
total thruster and PPU efficiency

16
cth
cell thickness

17
sh(1)
front shield thickness

18
sh(2)
back shield thickness

19
dt2
integration interval

20
pera1
initial periapsis altitude

21
apa1
initial apoapsis altitude

22
pera2
final periapsis altitude

23
apa2
final apoapsis altitude

24
dvi1
high thrust ∆V

Glenn Research Center Modifications
Variable Name
Description
Nominal or Default Value

iset
≠1 no change from basic program

=1 then

a) Julian date of mission0 = Julian date of missionf + trip time of last segment

b) orb1(i)=orb2(i) (i=1,...,5)

c) m0 = mf
d) fluence0=fluencef
0

ajetmass
jettison mass that is removed from a converged trajectory's final when iset=1
0 (kg)

totaltime
value to add to phase time to get mission time. It is used when iset =1 to reset the mission time.
0 (days)

pst
= true, generates a data file for output postprocessing {see filename.pst}
false

pera1
initial periapsis altitude (km)
0.

apa1
initial apoapsis altitude (km)
0.

pera2
final periapsis altitude (km)
0.

apa2
final apoapsis altitude (km)
0.

body
gravitational body identifier

can be any one of the nine planet names
‘earth’

array
solar array coefficient selector

see VARITOP USER’S MANUAL or look at system library for solar array models
‘invsqr’ for inverse square law

nsteps
number of parameter sweep steeps

when minyn(2,1) =minyn(2,2) =0
0

stgisp(2)
High thrust stage Isp (sec)

(1) is used for the 1st burn

(2) is used for the 2nd burn
0

stgm
High thrust stage dry mass (kg)
0

stgkt
High thrust stage tankage fraction
0

cells
selects Si or GaAs cell damage coefficients(use ‘gaas’ for GaAs)
‘Si’

tl any valid Julian date; the original SECKSPOT restricted calendar date to be between Jan. 1,1950 and Dec. 31,2000.

iset allows the user to pick up the problem at the end of the last converged trajectory and continue on to the next target point, which the user defines with a new orb2(i) via namelist input. Final spacecraft mass becomes the initial mass for the next case, final fluence becomes initial fluence, and tl (Julian date) is incremented by trip time. Time as reported in the .lst and .pst files is accumulated mission time rather than phase time. The .out and the .gus files contain only phase times.
The peran and apan (where n stands for 1 or 2) allow the user to input periapsis and apoapsis altitudes instead of semi-major axis and eccentricity to do parameter sweeps on just one or both of these and take advantage of the built-in LISTZ mechanism to vary these via the minyn array(s). For these variables to work properly, be sure to enter both peran and apan
body generalizes SEPSPOT to work properly at any of the Sun’s planets. It computes distance from the sun and shadowing with the appropriate values for the analytic ephemeris and planetary constants data.

array allows the user to specify solar array performance as a function of distance. The default conditions is inverse square law response which is inappropriate for Mercury and Venus orbiters.

nsteps computes the increments for minyn(2,1) and minyn(2,2) by setting minyn(2,_)=(minyn(3,_)-minyn(1,_)/(nsteps-1). nsteps must be greater than 1.

stgm, stgisp, and stgkt define a high thrust propulsion system that provide the high thrust ∆V (dvi1) for a combined high thrust/low thrust transfer system. The low thrust initial mass is defined as m0=m0*exp(-dvi1/(g*stgisp)-tankage-stgm where m0 on the r.h.s. of the = is the initial mass of the combined high thrust/low thrust stage. If stgisp is positive, then the above redefinition of initial mass is done, otherwise it is omitted and the program assumes that the supplied m0 is the initial mass of the low thrust system after completion of the high thrust system burn(s). The tankage is computed as stgkt*high_thrust_propellant_consumed. Note, the user must specify an Isp for each of the two possible burns done by the high thrust system.

The program computes solutions in canonical units based on internal mu=1.0, internal distance unit=1 earth radius, an external mu=398600.485 km3/sec2 and earth radius=6378.214 km, however these last values can change slightly when the JPL analytic ephemeris option is used. A circular orbit at 1 earth radii should have a period of 2 pi internal time units.

SEPSPOT reads input data using a subroutine NAMEIN from the SYSTEM library. NAMEIN uses serial FORTRAN input to create a namelist input file. The principal advantage of NAMEIN over conventional namelist is the section name (which is "input") can be omitted and commentary information can be included. The user must observe the following conventions of subroutine NAMEIN:

 data may start anywhere (unlike namelist which must start in typing position 2),

 data groupings must end with a & or $,

 & and $ can only be used to end a data grouping,

 the end of all input is signaled by &END,

 comments start with a semicolon (;),

 blank lines or "comment only" lines are allowed.

For example:

 &input

 title=' Example 1 Simple orbit raising, no plane change, nep, low precision'

 orb1 = 7378. , 0 , 28.5 , 0 , 0 , ; initial orbit

 orb2 = 16378. , 0 , 28.5 , 0 , 0 , ; final orbit

 m0=150.,pkw=2.,spim=5000,ef=.65,

 dt2=5.0,tfmax2=1000,tl=2448794.5,iq=6,

 ison=0,isun=0,ipow=0,iaj2=0,nop=2,

 nimax=20,

 flim=1.d-3,list=t,ipr=400,

 el0=10605.988,-6.6677435,2.1598275,.18054665E-01,-3.6312974,-55098.453,.000000

 tend=77.179015,

 norb=1 $

 title=' Example 1 Simple orbit raising, no plane change, nep, high precision'

 flim=1.d-6,

 el0=10603.565,.64948336E-02,-.21035231E-02,.00000000E+00,.33105844E-02,-55123.

 tend=77.213562,

 $

 title=' Example 1 Simple orbit raising, no plane change, sep, low precision'

 ison=1,flim=1.d-3,

 el0=17575.189,-4998.3283,5702.8970,511.92630,480.44559,-74504.367,.00000000E+0

 tend=108.72425,

 $

 title=' Example 1 Simple orbit raising, no plane change, sep, high precision'

 flim=1.d-6,

 el0=17585.158,-5005.8070,5670.9468,510.48671,473.33423,-74559.000,.00000000E+0

 tend=108.68227,

 $

&end

RUNNING SEPSPOT
sepspot “filename”

where “filename” is part of filename.inp which in the file that contains the program input data as above.

The program creates several files amoung them are:

filename.gus containing converged outputs suitable for incorporation back into the input file

filename.out containing a verbose output listing

filename.lst containing a brief and very useful trajectory summary output, made when list=t 
filename.pst containing binary data for the Sepspot Post Processor, made when pst=t

filename.hst containing a converged case history.

For example

sepspot example1

RUNNING SPP
The postprocessor spp (for sepspot post processor) read both user inputs and the .pst file sepspot generates. It allows the user to generate additional outputs for inclusion into an Excel spreadsheet or for plotting.

For example

spp aug99bl generates
 Input file of postprocessor = aug99bl.pst

1 Parameters for

 RTD Mission with Hall thruster -- Initial planar transfer - 405 km to 2 Re circular

 isp(sec) eff jul.date j2 p0 (kw)

 2080.00 0.49 ********** 0.00000 15.00

 Case= 0 Loop= 1 ison=1 isun=0 icon=1 ishad=2 ipow=0 norb= 6

 Output data pointers and labels

 1 step 2 time(dy) 3 a (rad) 4 h 5 k

 6 p 7 q 8 fluence 9 a (km) 10 e

 11 i (deg) 12 lan(deg) 13 arp(deg) 14 mass(kg) 15 maxp(kw)

 16 maxt (n) 17 a(m/s/s) 18 dv (k/s) 19 lamda a 20 lamda h

 21 lamda k 22 lamda p 23 lamda q 24 lamda m 25 lmda fln

 26 a' 27 h' 28 k' 29 p' 30 q'

 31 m' 32 fluence' 33 lamda' a 34 lamda' h 35 lamda' k

 36 lamda' p 37 lamda' q 38 lamda' m 39 lmda'fln 40 hamilton

 41 per (hr) 42 peri(km) 43 apoa(km) 44 no.nodes 45 shdt(min

 46 shdt(%pr 47 dlayt(mi 48 entry(dg 49 exit(deg 50 tona(dg)

 51 rsun-x 52 rsun-y 53 rsun-z 54 rsun-mag 55 ecc long

 56 x1 57 y1 58 in-plane 59 outplane 60 yaw

 61 pitch 62 roll 63 pan ornt 64 sun-pan 65 sun-x

 66 sun-y 67 sun-z 68 u-f 69 u-g 70 u-w

 71 sun x-y 72 psi 73 prmr ang 74 flt.path 75 tru anom

 Enter namelist /in/

 nout,iout,nhtpt,ihtpt,iwrite,prthdgs,help,

norbs,nthorb(1,..,norbs),allorbs,restrt,eoj,skiprd

The user is assumed familiar with the rules of FORTRAN namelist input at this point. Basically, the program wants a line of input such as

 &in nout=6,iout=2,9,10,11,12,13,iwrite=6 &end

The user told the postprocessor to generate output to the screen (iwrite=6) and to display 6 items with pointers to time, semi-major axis, eccentricity, inclination, long. of ascending node, and argument of perigee (iout=2,9,10,11,12,13). When in doubt, just enter &in help=t &end for the help screen. The post processor then writes back to the terminal screen

1 Parameters for

 RTD Mission with Hall thruster -- Initial planar transfer - 405 km to 2 Re circular

 isp(sec) eff jul.date j2 p0 (kw)

 2080.00 0.49 ********** 0.00000 15.00

1

 time(dy) a (km) e i (deg) lan(deg) arp(deg)

 0. 6783.0 0. 51.600 0. 0.

 13.000 7843.0 0.46593E-01 51.619 0.59900E-01 -37.596

 26.000 9337.2 0.75808E-01 51.626 0.10436 -30.935

 37.756 11155. 0.78298E-01 51.619 0.10626 -24.848

 49.513 12757. 0.41986E-04 51.600 0.90398E-01 -22.983

 End of data for this case

RUNNING RUN_READLST

The postprocessor run_readlst read the file filename.lst and presents back to the user either the first, the last, or the first and last lines of the filename.lst file. The output of this little processor is very handy if the user has run several cases back to back within one input file. To run this postprocessor just enter

run_readlst “filename”

where “filename” is part of filename.inp which in the file that contains the program input data as above.

For example

run_readlst aug99bl

Causes the program to generate

 Enter 1 to save the first line

 Enter 2 to save the last line

 Enter 3 to save first and last lines

3 <----- the user's input generates this output
 time sma ecc inc mass rpow pow flunc per dv

 .0 6783. .00000 51.600 1000.0 1.0000 15.00 .0 1.544 .0000

 49.5 12757. .00004 51.600 887.2 1.0000 15.00 .0 3.983 2.4409

 .0 12757. .00004 51.600 887.2 1.0000 15.00 .0 3.983 .0000

 396.1 42164. .00000 .000 835.8 1.0000 15.00 .0 23.934 5.8529

 .0 42164. .00000 .000 818.8 1.0000 15.00 .0 23.934 .0000

 6.3 31378. .00000 .000 799.4 1.0000 15.00 .0 15.366 .4895

 .0 31378. .00000 .000 782.4 1.0000 15.00 .0 15.366 .0000

 3.1 27378. .00000 .000 772.8 1.0000 15.00 .0 12.523 .2515

 .0 27378. .00000 .000 755.8 1.0000 15.00 .0 12.523 .0000

 3.7 23378. .00000 .000 744.3 1.0000 15.00 .0 9.882 .3135

 .0 23378. .00000 .000 727.3 1.0000 15.00 .0 9.882 .0000

 4.7 19378. .00000 .000 712.9 1.0000 15.00 .0 7.457 .4062

 .0 19378. .00000 .000 695.9 1.0000 15.00 .0 7.457 .0000

 6.3 15378. .00000 .000 677.2 1.0000 15.00 .0 5.272 .5575

 .0 15378. .00000 .000 660.2 1.0000 15.00 .0 5.272 .0000

 9.9 11378. .00000 .000 632.9 1.0000 15.00 .0 3.355 .8623

 .0 11378. .00000 .000 615.9 1.0000 15.00 .0 3.355 .0000

 19.9 7379. .00011 .000 567.8 1.0000 15.00 .0 1.752 1.6555
1

